Article successfully added.

CyFlow™ CD9 FITC

CyFlow™ CD9 FITC
Alternative Name: MRP-1 , P24
Antigen: CD9
Application: Flow cytometry
Clonality: monoclonal
Clone: MEM-61
Emission Maximum: 518 nm
Excitation Maximum: 490 to 495 nm
Field of Interest: Immunophenotyping
Format/Fluorochrome: FITC
Isotype: IgG1
Laser: Blue
Regulatory Status: RUO
Source Species: Mouse
Target Species: Human
Product number: CP638591

For Research Use Only

$276.71 CAD*

Price excludes any applicable taxes plus shipping costs

Build Your Own Reagent Panel
HLDA Workshop HLDA VI—WS Code P P-15 Quantity 100 tests Volume 2.0 mL Immunogen... more
CyFlow™ CD9 FITC
HLDA WorkshopHLDA VI—WS Code P P-15
Quantity100 tests
Volume2.0 mL
ImmunogenNALM-6 human pre-B cell line
Background InformationCD9 belongs to proteins of tetraspanin family that orchestrate cholesterol-associated tetraspanin-enriched signaling microdomains within the plasma membrane, forming complexes with each other as well as with integrins, membrane-anchored growth factors and other proteins. CD9 is involved in cell motility, osteoclastogenesis, neurite outgrowth, myotube formation, and sperm-egg fusion, plays roles in cell attachment and proliferation and is necessary for association of heterologous MHC II molecules on the dendritic cell plasma membrane which is important for effective T cell stimulation. CD9 is also considered as metastasis suppressor in solid tumors.
UsageThe reagent is designed for Flow Cytometry analysis of human blood cells. Recommended usage is 20·µl reagent·/ 100·µl of whole blood or 10^6 cells in a suspension. The content of a vial (2 ml) is sufficient for 100 tests.
Storage BufferThe reagent is provided in stabilizing phosphate buffered saline (PBS) solution, pH ≈7.4, containing 0.09% (w/v) sodium azide.
StorageAvoid prolonged exposure to light. Store in the dark at 2-8°C. Do not freeze.
StabilityDo not use after expiration date stamped on vial label.
Specific References

| Kishimoto T, Goyert S, Kikutani H, Mason D, Miyasaka M, Moretta L, Ohno T, Okumura K, Shaw S, Springer TA, Sugamura K, Sugawara H, von dem Borne AEGK, Zola H (Eds): Leucocyte Typing VI. Garland Publishing Inc, New York. 1997; 1‑1342. < NLM ID: 9712219 > | Stöckl J, Majdic O, Fischer G, Maurer D, Knapp W: Monomorphic molecules function as additional recognition structures on haptenated target cells for HLA‑A1‑restricted, hapten‑specific CTL. J Immunol. 2001 Sep 1; 167(5):2724‑33. < PMID: 11509616 > | Saito Y, Tachibana I, Takeda Y, Yamane H, He P, Suzuki M, Minami S, Kijima T, Yoshida M, Kumagai T, Osaki T, Kawase I: Absence of CD9 enhances adhesion‑dependent morphologic differentiation, survival, and matrix metalloproteinase‑2 production in small cell lung cancer cells. Cancer Res. 2006 Oct 1; 66(19):9557‑65. < PMID: 17018612 > | Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I: The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA. 2007 Jan 2; 104(1):234‑9. < PMID: 17190803 > | Israels SJ, McMillan-Ward EM: Platelet tetraspanin complexes and their association with lipid rafts. Thromb Haemost. 2007 Nov; 98(5):1081‑7. < PMID: 18000614 > | Kim YJ, Yu JM, Joo HJ, Kim HK, Cho HH, Bae YC, Jung JS: Role of CD9 in proliferation and proangiogenic action of human adipose‑derived mesenchymal stem cells. Pflugers Arch. 2007 Nov; 455(2):283‑96. < PMID: 17668233 > | Singh AB, Sugimoto K, Dhawan P, Harris RC: Juxtacrine activation of EGFR regulates claudin expression and increases transepithelial resistance. Am J Physiol Cell Physiol. 2007 Nov; 293(5):C1660‑8. < PMID: 17855771 > | Lafleur MA, Xu D, Hemler ME: Tetraspanin proteins regulate membrane type‑1 matrix metalloproteinase‑dependent pericellular proteolysis. Mol Biol Cell. 2009 Apr; 20(7):2030‑40. < PMID: 19211836 >